Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gates Open Research ; 2021.
Artículo en Inglés | ProQuest Central | ID: covidwho-1835886

RESUMEN

Background: Mathematical models have been used throughout the COVID-19 pandemic to inform policymaking decisions. The COVID-19 Multi-Model Comparison Collaboration (CMCC) was established to provide country governments, particularly low- and middle-income countries (LMICs), and other model users with an overview of the aims, capabilities and limits of the main multi-country COVID-19 models to optimise their usefulness in the COVID-19 response. Methods: Seven models were identified that satisfied the inclusion criteria for the model comparison and had creators that were willing to participate in this analysis. A questionnaire, extraction tables and interview structure were developed to be used for each model, these tools had the aim of capturing the model characteristics deemed of greatest importance based on discussions with the Policy Group. The questionnaires were first completed by the CMCC Technical group using publicly available information, before further clarification and verification was obtained during interviews with the model developers. The fitness-for-purpose flow chart for assessing the appropriateness for use of different COVID-19 models was developed jointly by the CMCC Technical Group and Policy Group. Results: A flow chart of key questions to assess the fitness-for-purpose of commonly used COVID-19 epidemiological models was developed, with focus placed on their use in LMICs. Furthermore, each model was summarised with a description of the main characteristics, as well as the level of engagement and expertise required to use or adapt these models to LMIC settings. Conclusions: This work formalises a process for engagement with models, which is often done on an ad-hoc basis, with recommendations for both policymakers and model developers and should improve modelling use in policy decision making.

2.
Nat Commun ; 12(1): 5705, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1442779

RESUMEN

COVID-19 transmission rates are often linked to locally circulating strains of SARS-CoV-2. Here we describe 203 SARS-CoV-2 whole genome sequences analyzed from strains circulating in Rwanda from May 2020 to February 2021. In particular, we report a shift in variant distribution towards the emerging sub-lineage A.23.1 that is currently dominating. Furthermore, we report the detection of the first Rwandan cases of the B.1.1.7 and B.1.351 variants of concern among incoming travelers tested at Kigali International Airport. To assess the importance of viral introductions from neighboring countries and local transmission, we exploit available individual travel history metadata to inform spatio-temporal phylogeographic inference, enabling us to take into account infections from unsampled locations. We uncover an important role of neighboring countries in seeding introductions into Rwanda, including those from which no genomic sequences were available. Our results highlight the importance of systematic genomic surveillance and regional collaborations for a durable response towards combating COVID-19.


Asunto(s)
COVID-19/virología , Genoma Viral/genética , SARS-CoV-2/genética , Enfermedad Relacionada con los Viajes , Adulto , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/transmisión , Monitoreo Epidemiológico , Femenino , Humanos , Masculino , Filogenia , Filogeografía , ARN Viral/genética , ARN Viral/aislamiento & purificación , Rwanda/epidemiología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Secuenciación Completa del Genoma
3.
Sci Rep ; 11(1): 17793, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1397895

RESUMEN

The rapid identification and isolation of infected individuals remains a key strategy for controlling the spread of SARS-CoV-2. Frequent testing of populations to detect infection early in asymptomatic or presymptomatic individuals can be a powerful tool for intercepting transmission, especially when the viral prevalence is low. However, RT-PCR testing-the gold standard of SARS-CoV-2 diagnosis-is expensive, making regular testing of every individual unfeasible. Sample pooling is one approach to lowering costs. By combining samples and testing them in groups the number of tests required is reduced, substantially lowering costs. Here we report on the implementation of pooling strategies using 3-d and 4-d hypercubes to test a professional sports team in South Africa. We have shown that infected samples can be reliably detected in groups of 27 and 81, with minimal loss of assay sensitivity for samples with individual Ct values of up to 32. We report on the automation of sample pooling, using a liquid-handling robot and an automated web interface to identify positive samples. We conclude that hypercube pooling allows for the reliable RT-PCR detection of SARS-CoV-2 infection, at significantly lower costs than lateral flow antigen (LFA) tests.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos , Antígenos Virales/aislamiento & purificación , Atletas , COVID-19/sangre , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/economía , Prueba Serológica para COVID-19/economía , Prueba Serológica para COVID-19/métodos , Ahorro de Costo , Ensayos Analíticos de Alto Rendimiento/economía , Humanos , ARN Viral/aislamiento & purificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Sudáfrica , Manejo de Especímenes/economía , Medicina Deportiva/economía , Medicina Deportiva/métodos
5.
Nature ; 589(7841): 276-280, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1065892

RESUMEN

Suppressing infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will probably require the rapid identification and isolation of individuals infected with the virus on an ongoing basis. Reverse-transcription polymerase chain reaction (RT-PCR) tests are accurate but costly, which makes the regular testing of every individual expensive. These costs are a challenge for all countries around the world, but particularly for low-to-middle-income countries. Cost reductions can be achieved by pooling (or combining) subsamples and testing them in groups1-7. A balance must be struck between increasing the group size and retaining test sensitivity, as sample dilution increases the likelihood of false-negative test results for individuals with a low viral load in the sampled region at the time of the test8. Similarly, minimizing the number of tests to reduce costs must be balanced against minimizing the time that testing takes, to reduce the spread of the infection. Here we propose an algorithm for pooling subsamples based on the geometry of a hypercube that, at low prevalence, accurately identifies individuals infected with SARS-CoV-2 in a small number of tests and few rounds of testing. We discuss the optimal group size and explain why, given the highly infectious nature of the disease, largely parallel searches are preferred. We report proof-of-concept experiments in which a positive subsample was detected even when diluted 100-fold with negative subsamples (compared with 30-48-fold dilutions described in previous studies9-11). We quantify the loss of sensitivity due to dilution and discuss how it may be mitigated by the frequent re-testing of groups, for example. With the use of these methods, the cost of mass testing could be reduced by a large factor. At low prevalence, the costs decrease in rough proportion to the prevalence. Field trials of our approach are under way in Rwanda and South Africa. The use of group testing on a massive scale to monitor infection rates closely and continually in a population, along with the rapid and effective isolation of people with SARS-CoV-2 infections, provides a promising pathway towards the long-term control of coronavirus disease 2019 (COVID-19).


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/epidemiología , COVID-19/virología , Vigilancia de la Población/métodos , SARS-CoV-2/aislamiento & purificación , Algoritmos , COVID-19/diagnóstico , Humanos , Prevalencia , Rwanda/epidemiología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA